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Abstract 
 

Many of the UAV missions require them to fly in urban setting over low altitudes making 

them vulnerable to the collision with objects in their vicinity such as trees, buildings, 

power lines etc. So it is very crucial for UAVs to have autonomous obstacle detection and 

avoidance capability to complete their missions safely and successfully. In order to find a 

solution to this problem, first an elaborate literature survey has been conducted. This 

literature survey led to a fairly thorough understanding of the state-of-art techniques in 

the area of reactive obstacle avoidance algorithms for UAVs. For reactive obstacle 

avoidance, it is essential to sense the environment around UAV closely and continuously 

with some on-board sensor. A video camera is very popular such sensor. It is a 2D 

passive (vision) sensor and has many advantages such as compact size, low weight, low 

cost, and passive sensing capability. However, the data from vision sensor is usually 

noisy and inaccurate, hence must be filtered. So an Extended Kalman Filter (EKF) has 

been developed to get the best possible estimate of relative position of the obstacles and 

target with respect to the UAV based on noisy measurements from the vision sensor. 

After getting the obstacle position estimate from EKF, the Collision Cone approach has 

been applied to detect any incoming obstacle and to find a new aiming point in order to 

avoid it. Once the aiming point is known, the obstacle avoidance problem reduces to a 

guidance problem. Next, two recently proposed nonlinear guidance laws, Nonlinear 

Geometric Guidance (NGG) and Differential Geometric Guidance (DGG), have been 

applied for guidance purpose. This paper describes the implementation of the guidance 

strategies NGG and DGG while estimating the position of the obstacles with the noisy 

measurements from a 2D passive vision sensor with EKF. The algorithm developed has 

been validated from a number of simulation studies in three-dimensional scenario. 
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Chapter 1  

Introduction 
Unmanned aerial vehicles (UAVs) are expected to be ubiquitous in the near future, 

autonomously performing complex military and civilian missions such as reconnaissance, 

environmental monitoring, border patrol, search and rescue operations, disaster relief, 

traffic monitoring etc [1]. 

 

Many of these applications require the UAV to fly at low altitudes in proximity with 

man made and natural structures such as buildings, trees, power lines etc. A collision 

with such structure would be fatal and would result in mission failure with the loss of the 

vehicle. Therefore, UAVs should have some sense of “situation awareness” [2] in order 

to successfully sense and avoid obstacles. At the same time they should be able to go 

ahead to pursue their original mission. This requires robust and computationally feasible 

obstacle avoidance algorithms to be implemented on-board the UAV. However, UAVs 

have limited computational resources. Following limitations exist for any system to be 

implemented onboard. 

 

1. Size, weight and power consumption of onboard processor is limited. The processing 

power and memory available to the algorithm are also limited. Therefore, the 

algorithm must be computationally very efficient. 

2. The algorithm must respond quickly, because it needs to be implemented in an online 

navigation system. 

3. The payload of UAV is extremely limited. Therefore the sensor used to gain 

information from the surroundings must be lightweight. Also it should be energy 

efficient and economical. 

4. UAVs may need to avoid detection for certain military missions like enemy 

reconnaissance. Thus active sensors, which send out energy into the environment, are 

not suitable. 
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In view of limitations (3) and (4), vision based navigation is a very suitable option. It 

is compact, lightweight, economical as well as a passive sensor. Therefore the obstacle 

avoidance algorithms should be able to perform well with vision information. However, 

the information from vision sensor is usually noisy and inaccurate. Hence algorithm must 

filter out any noise or at least minimize noise in order to get best possible estimate of the 

obstacle/target position so that reactive obstacle avoidance can work properly. At the 

same time algorithm must be computationally efficient to satisfy the above requirements 

as well. 

 

UAV obstacle avoidance approaches can be classified into deliberative global path 

planning and reactive local obstacle avoidance algorithms. Global path planning 

algorithms assume complete knowledge of the environment beforehand and calculate an 

obstacle-free trajectory to the goal point. These methods take into account the dynamics 

of the UAV, and avoid known obstacles like buildings, trees etc. Additionally, the UAV 

constraints such as turn radius and kinodynamic constraints are also taken into account. 

Usually they attempt to find optimal paths. However, these methods are computationally 

expensive hence cannot be implemented online. Also they require complete knowledge of 

the surrounding environment which is not the case always. Local methods are reactive in 

nature, i.e. an onboard sensor detects the possibility of collision and then an alternative 

route is planned online. These consist of computationally efficient algorithms and are 

able to react quickly to changes in the environment. However these methods cannot 

guarantee optimality. Local navigation methods do not retain global information and 

continually react to changing environments. It is essential that local planning methods are 

fast and reliable, since the speed and reliability of the UAV is limited by them. 

 

Recent obstacle avoidance approaches implement multi-layer architectures. A global 

planning layer first finds a dynamically feasible obstacle-free optimal path to the goal, 

and then a local obstacle avoidance layer reacts to changes in the environment and 

computes an alternate, obstacle-free path online. This scheme reduces the computation 

resources required since the amount of online computation carried out is much less. 

Optimality of the path may also be guaranteed, except for brief periods when the UAV 
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maneuvers away from the planned trajectory to avoid a local obstacle. This paper reviews 

some recently developed ideas of reactive obstacle avoidance algorithms. A literature 

survey of evolving philosophies on obstacle avoidance of UAVs is presented in Chapter 

2. 

 

Obstacle avoidance is often considered as another side of the target interception 

problem [3]. This is because once an incoming obstacle is detected, an alternate aiming 

point must be found in order to avoid it. After this, the problem reduces to one of finding 

a path which satisfies terminal conditions. This constitutes a guidance problem. The 

problem considered in this paper involves collision avoidance with stationary obstacles as 

they appear during flight. A goal point is considered after the obstacle region (which may 

be a way-point decided by a global planner). The objective is to avoid obstacles along the 

way and then reach the goal point. 

 

The developed algorithm here, applies vision based sensor (video camera) to sense 

the surrounding environment and detect any incoming obstacle as well as to look for the 

target point or destination. During this study we assumed that an onboard image 

processor is available capable of detecting multiple obstacles simultaneously and 

distinguishing them. Since the measurements from a vision sensor are inaccurate, it is 

necessary to filter the noise out and get a very good estimate of the relative position of 

the obstacle before the guidance can be applied. The filtering technique has to be fast, 

computationally efficient, and implemented over the onboard processor. Since the 

measurement equation from a vision sensor is often nonlinear, an Extended Kalman Filter 

(EKF) is a very suitable technique for such application. It is recursive in nature hence can 

be implemented online with very efficient computing. On the other hand, EKF is 

“fragile” is nature, so care must be taken for the tuning of its parameter before any 

application. The fundamental assumption with this filter is that the true state is always 

sufficiently close to the estimated state. Hence the error dynamics can be represented 

fairly accurately by the linearized system about the estimated state. In other words, if 

initial estimation error is significantly high then it is very difficult to converge. 

Nonetheless, the EKF has been applied successfully for a range of problems over the past 
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decades. It is easy to implement, computationally efficient and works quite well with 

most of the problems. Once the obstacle position is estimated, next is to find out any 

potential collision with an obstacle and apply some fast guidance strategy in order to 

avoid it. 

 

Two recently developed nonlinear guidance laws [4], named as Nonlinear Geometric 

Guidance (NGG) and Differential Geometric Guidance (DGG), are implemented here for 

guidance purpose. This navigation laws apply collision cone approach [3] to detect any 

possible collision and, if necessary, compute an alternate aiming point in order to avoid 

it. The guidance algorithms then attempt to quickly align the velocity vector of the 

vehicle along the aiming point within a part of the available time-to-go, which ensures 

quick reaction and hence safety of the vehicle. The main advantage of these guidance 

laws is that they effect high maneuvering at the beginning, causing the velocity vector of 

the UAV to align with the aiming point direction quickly and then settle along it. 

Therefore, there is no need to maneuver all the way until the aiming point is reached. 

Such a strategy ensures quick reaction and hence safety of the vehicle by quickly 

avoiding obstacle. Note that after the obstacles are avoided, the destination point also 

serves as another aiming point and hence the same guidance is also applied for reaching 

the destination when the path is free of obstacles. Therefore these guidance laws achieve 

reactive obstacle avoidance as well as destination-seeking. 

 

The obstacle position estimation technique with visual information developed in this 

paper has been integrated with the recently developed NGG and DGG navigation laws. 

This paper validates these guidance strategies with vision sensing from a number of 

simulation studies in various three-dimensional scenarios. 
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Chapter 2  

Literature Survey 
This chapter presents a literature survey on recently evolving ideas for reactive obstacle 

avoidance for UAVs. Unlike Global Path Planning Algorithms, reactive obstacle 

avoidance algorithms deal only with the problem of avoiding collisions with obstacles as 

and when they appear during the flight. These algorithms do not require global 

information i.e. they do not require knowledge of the entire environment, or the initial 

and goal points. The information about the immediate environment and nearby obstacles 

is provided to the algorithm by onboard sensors. This information is often sufficient to 

compute an avoidance maneuver for the UAV. It must be emphasized that these 

algorithms can be imbedded into any global path planning algorithms, under the 

assumption that after avoiding the obstacle, the UAV comes back to the global path as 

soon as possible. 

 

2.1 Nonlinear Model Predictive Control Approach 
Model Predictive Control (MPC) [5] has gained popularity in recent years as a control 

approach for nonlinear dynamical systems. This approach handles realistic system 

constraints such as input saturation and state constraints and is found to be suitable for 

path-planning problems in complex environments [6]. An MPC scheme is implemented 

by [7] to achieve online obstacle avoidance in UAVs. Since MPC performs online 

optimization over a finite receding horizon, it can account for future environment 

changes. Obstacle avoidance is built into the optimization problem, which performs 

reference trajectory tracking and obstacle avoidance in a single module. When a collision 

is predicted to occur, a safe trajectory that avoids the impending collision is computed 

(Figure 2.1). In the MPC formulation, an optimal control input sequence over a finite 

receding horizon N  must be found that minimizes a cost function [8] that is to find 

( ), , 1, 1ku t k i i i N= + + −     (2.1) 
such that 

( ) arg min ( , , )k ku t V x t u=      (2.2) 
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where 
1

( , , ) ( ( ), ( )) ( ( ))
k N

k

t

k k N
i t

V x t u L x i u i F x t
+ −

+
=

= +∑     (2.3) 

 
Figure 2.1: Trajectory tracking and re-planning using MPC 

 
L  is a positive definite cost function and F  is the terminal cost. The cost function L  

is chosen as: 

1

1 1( , ) ( ) ( ) ( ) ( , )
2 2

O
T T

r r r r v l
l

L x u x x Q x x u Ru S x P x
=

= − − + + + η∑   (2.4) 

The first term in the cost function ensures that any deviation from the reference state 

results in a large value of cost, and therefore is penalized. Similarly the second term 

penalizes high control inputs. The term S(x) penalizes states that are outside the allowable 

range. The last term is a potential function term to be included for obstacle avoidance. It 

is chosen as follows: 

0
1( , )

( ) ( )l T
v l v l

P x
x G x

η =
− η − η + ε

    (2.5) 

where 3
vx R∈  is the position of the UAV, and lη  is the position of the thl  obstacle out of 

O  obstacles. This penalty function increases as || ||v lx − η  decreases. G  is positive 

definite and ε  is a quantity that is kept positive to prevent P  from being singular when 

|| || 0v lx − η → . The potential function term may be chosen to be enabled only if 

min|| ||v lx − η < σ , a minimum safety distance to be maintained. A new trajectory is then 

planned. Including collision avoidance into the optimization step reduces the risk of the 

Initial Point 

Obstacle 
Obstacle 

Goal Point 

Optimize over finite horizon N 

Original Path 

Actual Path Followed 
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UAV falling into a local minimum, since MPC looks ahead and optimizes over a finite 

horizon. 

 

The obstacle’s predicted position after 1k N− −  steps is required ( N  is the horizon) 

in order to avoid the obstacle. If the current position and velocity lv  of the obstacle may 

be estimated, the position of the obstacle after pN  steps (prediction horizon) may be 

found at the thk  step: 

1( ) ( ) ( )( )l k i l k l k it t tv t t+ −η = η + Δ     (2.6) 
 

Control saturation is taken into account during the online optimization process. 

Additionally a tracking feedback controller in the loop will track the reference without 

any error in the presence of modeling uncertainties. 

 

A dual mode strategy is followed in order to track a reference trajectory, as well as 

avoid collisions. In normal flight, parameters are chosen so as to achieve tracking 

performance and good stability. In the emergency evasive maneuver case, the parameters 

are chosen so as to generate a trajectory that will avoid collision at all cost. During 

evasion, large control effort and large deviations from reference are allowed. Results of 

simulations in [8] indicate that this method is capable of avoiding hostile obstacles flying 

at high speeds (100 KM/H) and with different heading angles. This method was 

implemented successfully in unmanned helicopters. A disadvantage of this method is that 

MPC is quite computation intensive and may not be suitable for online implementation 

on small UAVs. An extension of this approach can be towards collision avoidance with 

maneuvering obstacles. This would require an estimator and some knowledge of the 

dynamics of the obstacle. 

 

2.2 Vision Based Approach 
Vision based navigation, guidance and control has become one of the most focused 

research area in automation of robots and UAVs. It is efficient to use a videos sensor 

since it is small, light-weight, economical and power efficient. Increasing computational 
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power of small processors and consequent improvement in quality of digital image 

analysis is another motivation for using vision based approach. Additionally, in nature 

most of birds and insects use vision for collision avoidance and navigation. Following are 

the different vision based algorithms developed to address the problem of autonomous 

obstacle avoidance by UAVs. 

 

2.2.1 Neural Network Approach 
A vision based Grossberg Neural Network (GNN) [9] scheme is used for local collision 

avoidance [10]. The GNNs are nonlinear competitive neural networks. They are able to 

explain the working of human vision, and have been used in a variety of vision based 

applications, especially in pattern recognition [11]. GNNs can be used for UAV vision 

based navigation. A combination of Visibility Graphs and GNNs is used to achieve 

online collision avoidance. 

 

A two-layer, dual-mode control architecture achieves a formation of UAVs as well as 

collision avoidance. The top layer generates a reference trajectory and the lower layer 

tracks this reference taking into account the dynamics of the vehicle. In an obstacle-free 

environment, “Safe Mode" operation is carried out, which develops and maintains a 

formation of UAVs. When obstacles are detected using an on-board sensor, the “Danger 

Mode" is activated, which finds the shortest path out of the danger zone. In the “Safe 

Mode", the reference trajectory is to be generated, so that the UAVs achieve and maintain 

the desired formation. The relative dynamics between the UAVs is used to develop an 

infinite time optimal scheme [12] of formation in a centralized way. In order to achieve 

this, the following cost function is to be minimized: 

[( ) ( ) ]T T
r d r d r r

t

J x x Q x x u Ru dt
∞

= − − +  ∫     (2.7) 

Subject to 

r r r r rx A x B u= +            (2.8) 

rx  is the relative state (relative position and relative velocity between two UAVs) and 

dx  is the desired value of state. ru  is the relative control i.e. the resultant acceleration 
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between two UAVs. This formulation attempts to attain a formation as well as minimize 

the control effort for this. The reference trajectory is generated online at every step. The 

danger mode is activated when an obstacle is sensed. In this situation, the formation is 

allowed to break. The UAVs must avoid collisions with obstacles as well as with the 

other UAVs in the formation. The danger mode operation uses a combination of 

Visibility Graphs [13] and vision based Grossberg Neural Networks (GNN). A buffer 

zone is created around the obstacles. A visibility graph of the environment is formed by 

connecting all mutually visible vertices of the obstacle buffer zones together. In two 

dimensional environments the shortest distance paths are obtained by moving in straight 

lines and turning at the vertices of obstacles. Therefore, as part of the GNN, neurons are 

placed at the vertices of each obstacle's buffer zone. Figure 2.2 shows neuron placement, 

visibility graph and the re-planned trajectory. 

   
Figure 2.2: Danger Mode operation using visibility graph and GNNs 

 

The activity of each neuron depends upon excitation received from other neurons as 

well as excitation from the goal point. The activity is calculated from a shunting 

equation: 

1

( )( )
k

i
i i ij j

j

dx ax b x E w x
dt =

= − + − + ∑          (2.9) 

where 

1 2E E E= +       (2.10) 

1
p

E
d
α

=        (2.11) 

Original Path 

Re-planned Path 

Goal Point 

Initial Point 

Neurons 
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2

100,
0,

if the neuron is on destination
E

otherwise
     

={     (2.12) 

ix  is the activity of the thi  neuron, ij jw x  is excitation due to neighboring neuron, where 

/ij ijw dμ= , ijd  is the distance between UAVs i  and j , pd  is the perpendicular distance 

of the vertex from the line joining the UAV and the target. E  is the excitation composed 

of two parts. 1E  is the excitation due to closeness of the vertex from the present path. α  

and μ  are weights that must be tuned correctly so that the deviation from current path 

and closeness to goal are weighed correctly. The neurons nearest to the goal and nearest 

to the current path have the highest values of activity. Thus, by following the vertices 

with highest activities, the UAV is able to get out of the danger mode. The path followed 

will be the shortest distance path. Collision avoidance with other UAVs is achieved in the 

following way. When a potential collision is sensed, the UAV with lower index creates a 

buffer zone around the UAV with higher index and attempts to avoid it. 

 

In the lower layer, tracking the reference generated by both the Safe Mode and the 

Danger Mode is done using a Model Predictive Controller (MPC) [14]. This method 

consists of finding the optimal control input sequence to minimize a cost function at 

every step. The cost function here is formulated such that the actual output tracks the 

reference output, along with control minimization. This method also takes into account 

practical vehicle constraints. The cost function to be minimized at the thk  step is given by 

following equation: 

[ ( ) ( )] [ ( ) ( )] ( ) ( )T
k k d k k k d k k k kJ y t y t Q y t y t U t R U t= − − + Δ Δ            (2.13) 

y  is the actual output, dy  is the desired output and UΔ  is the control history. kQ  and 

kR  are weighting matrices to be chosen appropriately. Simulation results in [10] show 

that the UAVs developed a desired formation and successfully re-planned trajectories to 

avoid obstacles along the way. Cooperative collision avoidance among UAVs is also 

achieved. A possible extension of this method is the case of non-cooperative collision 

avoidance. This can be implemented with an estimator to find the hostile obstacles' 

velocity and position. 
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2.2.2 EKF Estimation Approach 
In their research work, [15] focuses on vision-based navigation and guidance system 

design for UAVs to detect and avoid unforeseen obstacles while executing a waypoint 

tracking mission. Since the vision-based measurements are noisy and inaccurate, it is 

necessary to filter out the noise before applying the guidance. Additionally, visual 

measurements are also a nonlinear function of the relative state. Hence EKF is a very 

suitable choice to design the navigation filter. The UAV motion dynamics are modeled as 

following equations: 

v v

v v v v

v v

x u
X y v V

z w

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
      (2.14) 

v x

v v y

v z

u a
V v a a

w a

⎡ ⎤⎡ ⎤
⎢ ⎥= = =⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

      (2.15) 

here 0xa = , i.e. velocity is constant in X-direction. The vehicle is controlled by only 

lateral acceleration ya  and vertical acceleration za . A camera is mounted on the vehicle 

and its attitude is assumed to be known in the form of a rotation matrix from the local 

frame LF  to the camera frame CF , which is denoted by CLL . Let [ ]T
wp wp wp wpX x y z=  

be a given waypoint location in LF . Then the waypoint tracking problem is achieved if 

( ) , ( )v f wp v f wpy t y z t z=  =      (2.16) 

where ft  is a time at which ( )v f wpx t x=  is satisfied. Let obsX  be obstacle's position in LF  

and assume 0obsX = , i.e., stationary obstacles. Then the obstacle's relative motion 

dynamics with respect to the vehicle is written by 

obs v vX X X V= − = −       (2.17) 

where [ ]T
obs vX X X x y z= − =  is a relative position vector in LF . For collision 

avoidance, the vehicle is required to keep a minimum distance d  from every obstacle. 

That is, a collision-safety boundary becomes a spherical surface with a radius d  and a 

center at obsX . Therefore, a mission given to the vehicle is to satisfy (2.16) while always 

maintaining || ||X d ≥  for all obstacles. However, the obstacle's location obsX  is unknown 
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to the vehicle, and so the relative position X  is also unknown. Hence, for obstacle 

avoidance, the guidance system can only use its estimate which is obtained through a 2D 

vision sensor. 

 
Figure 2.3: Pin-Hole Camera Model 

The camera frame CF  is taken so that the CX -axis aligns with the camera's optical 

axis. Let [ ]T
C CL c c cX L X x y z= =  be the relative position vector expressed in CF . 

Assuming the pin-hole camera model shown in Figure 2.3, the 2-D measurement of the 

obstacle position in an image plane at a thk  time step is given by 

( )ck
k k ck k

ck ck

yfz h X
x z

υ υ
⎡ ⎤

= + = +⎢ ⎥
⎣ ⎦

    (2.18) 

where f  is a focal length of the camera and kυ  is a zero mean Gaussian discrete white 

noise process with covariance matrix 2
kR Iσ= . 

Since the measurement model (2.18) is nonlinear with respect to the relative state, an 

EKF is applied to estimate the relative position vector X  of each obstacle. The EKF for 

Image Plane 

Focal Length f  

Camera Frame CF  

Camera vX  

cx  

cy  

cz  

Obstacle Position obsX  

Obstacle Projection on Image Plane 

Y axis 

Z axis 
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the process model (2.14), (2.15) and the measurement model (2.18) is formulated as 

follows. 

• Update: The EKF update procedure is performed by using the residual between 

the actual measurement and the predicted measurement. 

( )ˆ ˆ ˆk k k k kX X K z z− −= + −      (2.19) 

k k k k kP P K H P− −= −       (2.20) 

1( )T T
k k k k k k kK P H H P H R− − −= +     (2.21) 

where ˆ
kX  is an updated estimate of X  at a thk  time step and kP  is its error 

covariance matrix. kK  is a Kalman gain. ˆ
kX −  and kP−  are a predicted estimate and 

its error covariance matrix. A predicted measurement is obtained by 

ˆˆ ( )k CLk kz h L X− −=  where CLkL  is a camera attitude at the thk  time step. And a 

measurement matrix kH  is calculated by 

1 0
ˆ( ) 1 1 ˆ( )ˆ ˆ ˆ

0 1
ˆ

ck

ckCLk
k CLk ck CLk

ck ckk ck

ck

y
xh L XH L h X I L

X x xX X z
x

−

−
−

− −− −

−

⎡ ⎤
−⎢ ⎥

∂ ⎢ ⎥ ⎡ ⎤= = = −⎣ ⎦⎢ ⎥∂ =
−⎢ ⎥

⎢ ⎥⎣ ⎦

 (2.22) 

 

• Prediction: The EKF prediction procedure propagates the updated estimate 

obtained at a current time step k  to the next time step 1k +  through the process 

model (2.23), (2.24). 

( )2
1

1ˆ ˆ
2k k vk k k kX X V t a t−

+ = + Δ + Δ     (2.23) 

1
T

k k k k kP P Q−
+ = Φ Φ +       (2.24) 

where 1k k kt t t+Δ = −  is a sampling time. kΦ  is a state transition matrix and which 

can be approximated by 

k IΦ  

for stationary obstacles when ktΔ  is sufficiently small, kQ  is a covariance matrix 

of the process noise. The form 2
k X kQ I tσ= ⋅Δ  is used in the filter design. 
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Since there can be multiple obstacles in the vehicle's surroundings, the image 

processor may detect more than one obstacle in the same image frame. In order to update 

each estimate correctly, it is very important to create a right correspondence between the 

measurements and the estimates before applying the EKF procedure. The statistical z-test 

[16] is used for this purpose. 

 

The problem of flying a UAV with vision based guidance can be seen as a control 

minimizing Proportional Navigation (PN) guidance problem in the absence of obstacles. 

PN Guidance is used in missile guidance, [17] and the problem of a UAV pursuing its 

goal may be interpreted as a similar problem. But when obstacles are to be avoided, 

multiple PN guidance problems need to be solved. A collision avoidance scheme based 

on PN guidance is presented in [18]. However, this scheme leads to a jump in the control 

effort every time a new target is pursued. Instead, a single Minimum Effort Guidance 

(MEG) approach minimizes the control effort along with avoiding collisions for multiple 

targets [19]. In other words, the control effort is minimized for the entire trajectory from 

the initial point to the goal point via the obstacle aiming point, leading to a lower overall 

control effort. A collision cone approach is used to detect potential collisions, for which 

an Extended Kalman Filter (EKF) [20] is used to estimate the relative distance from the 

UAV to the obstacle. 

 

The PN guidance law is derived by solving the following optimization problem for 

control minimization for each aiming point obtained: 

0 0

2 21 1min ( ) ( ) ( ( ) ( ))
2 2

go got t
T

oa y z
t t

J a t a t dt a t a t dt =  = +  ∫ ∫    (2.25) 

Subject to vehicle dynamics with terminal conditions given in (2.16), the resulting 

optimal guidance law is 

0 02

0 0

0 0
1 1ˆ( ) 3 ( ) ( )ˆ ˆ( )

ˆ( ) ( )
oa v ap

go o go o
v ap

a t y t y v t
t t t t

z t z w t

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= − − +⎜ ⎟⎢ ⎥ ⎢ ⎥− −⎜ ⎟⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦⎝ ⎠

   (2.26) 

 



 15

The optimal control obtained from the PN Guidance method is only piecewise 

continuous, with a jump between targets. MEG handles all the terminal conditions within 

one problem [21]. The optimal control is continuous and piecewise linear. This method, 

therefore, yields a lower cost. The optimization problem remains the same and all the 

terminal conditions are considered in the problem. The control law is found by cubic 

interpolation of the single condition case. The resulting optimal control law is 

0

0

0 0

0

0
( )
( )

0
3 3 ˆ( ) ( ) ( )ˆ ˆ ˆ3( ) 4( ) ( )

ˆ( )

0
2 ˆ

ˆ( )
ˆ

oa v ap
go o f go go o

v ap

ap d
f goo

ap d

v t
w t

a t a t y t y
t t t t t t

z t z

y y
t t

z z

⎛ ⎞⎡ ⎤⎜ ⎟⎢ ⎥ +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟
⎜ ⎟⎡ ⎤
⎜ ⎟⎢ ⎥= − −⎜ ⎟⎢ ⎥− + − −⎜ ⎟⎢ ⎥−⎣ ⎦⎜ ⎟
⎜ ⎟⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟− −⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

  (2.27) 

In [19], both PN Guidance and Minimum Effort Guidance are used to solve the same 

problem. The cost is found to be lower in MEG. Therefore, MEG is found to be a better 

method in terms of the control minimization achieved. However, in case of obstacle 

avoidance, vehicle safety has the foremost priority so minimum control effort is not a 

requirement. Also MEG maneuvers the UAV till it reaches the aiming point which is 

quite risky given the position of obstacle is not known with full certainty. So UAV 

velocity vector should be aligned along the aiming point as quick as possible in some part 

of time-to-go. 

 

2.2.3 Optic Flow Based Approach 
The obstacle detection through optic flow is an already widely studied problem [22]. The 

objective here is to explain changes in an image sequence as the result of a motion field, 

given an image sequence ( , )tI x y , the optical flow ( ),x yv v  has to match the following 

optical flow equation: 

0t t t
x y

I I Iv v
x y t

∂ ∂ ∂
+ + =

∂ ∂ ∂
     (2.28) 
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No point wise resolution of the optical flow equation is possible since on each 

location and each time, this would consist in solving a single scalar equation from two 

scalar unknowns. This is known as the aperture problem. [23] and [24] survey a number 

of ways to compute optical flow of a changing image. The most appealing algorithms 

tend to use wavelets to interpolate the sparse flow data in between the borders. 

 

The problem of collision avoidance has been addressed by the use of optic flow in 

various projects [25]. There is a relation between time to impact and optic flow. Optic 

Flow during motion towards an object is a direct measure for time to impact 
t

dt
v

= . In 

practice this temporal distance is very useful to trigger a well-dosed reflex to avoid a 

collision. A high flow meaning high risk, this high optic flow can be used as trigger for a 

collision avoidance maneuver. 

 

2.3 Summary of Literature Review 
Much of the benefits of deploying UAVs can be derived from autonomous missions. Path 

planning with obstacle avoidance is an important problem which needs to be addressed to 

ensure safety of such vehicles in autonomous missions. An attempt has been made in this 

paper to present a brief overview of a few promising and evolving ideas such as model 

predictive control, vision based algorithms, minimum effort guidance etc. As mentioned 

earlier, there are several requirements that an algorithm must satisfy in order to solve the 

online obstacle avoidance problem completely. A few key issues that need to be 

addressed in a good collision avoidance algorithm include: 

• Collision avoidance with fixed obstacles, as they appear during the flight without any 

or little priori information 

• Solution of the problem taking the vehicle dynamics into account, including state and 

input constraints (many of the current algorithms are based on only kinematics) 

• Development of fast algorithms, which can be implemented online with limited 

onboard processing capacity 
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• Capability to sense and avoid small obstacles (such as electric power lines, small 

birds etc) 

• Robustness for issues such as limited information of the environment, partial loss of 

information etc 

 

In addition to the above issues, there are many other issues for successful deployment 

of UAVs, such as requirement for light weight equipments, power efficiency (for high 

endurance), stealthness etc. Although an attempt has been made in this paper to give an 

overview of some of the recently proposed techniques which partially address some of 

these issues, promising algorithms satisfying many of these requirements simultaneously 

is yet to be developed. Additionally, some of the assumptions behind the proposed 

algorithms (such as non-maneuvering constant speed flying objects, appearance of one 

obstacle at a time, perfect information about the environment etc.) are not realistic and 

hence need to be relaxed. A lot of research is being carried out worldwide to design 

collision avoidance systems that address many of these important concerns. 
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Chapter 3  

Obstacle Position Estimation Using EKF 
In this section we describe the formulation of the obstacle position estimation problem. 

The motivation behind using vision based sensing is presented first. The assumptions 

made in this study are explained next. Then the problem geometry is described. Next 

section provides the summary of continues-discrete form of Extended Kalman Filter 

(EKF). Section 3.3 explains in detail how EKF is applied for the problem of obstacle 

position estimation with vision based measurements. 

 

3.1 Vision Based Sensing 
As stated earlier, certain limitations exist for any system or algorithm to be implemented 

onboard a small flying vehicle. First limitation is weight constrain i.e. any sensor used for 

obstacle detection must be light weight otherwise it might seriously compromise the 

UAV’s flying and maneuvering capability. Second limitation is power consumption. 

Generally small UAVs are battery powered and they do not have much extra power 

available onboard. Power consumed by obstacle avoidance system will also limit the 

UAV flying time i.e. limiting the UAVs effectiveness for many missions. Another 

limitation, which concerns the military missions, is stealthness i.e. UAV should not be 

detectable while operative inside enemy aerospace. Thus sensor applied must be passive 

in nature i.e. while sensing the surrounding it should not send energy signal into the 

environment. 

 

A small video camera addresses all these concerns. They are compact, light-weight, 

power efficient, economical as well as passive sensors. These advantages make a video 

camera very popular choice in such application. Increasing computational power of small 

processors and consequent improvement in quality of digital image processing is another 

motivation for applying vision based navigation. Additionally vision based navigation is 

a prevalent phenomenon in nature where almost all kinds of birds and insects exclusively 

use vision for detection and navigation. 
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3.1.1 Assumptions Made in this Study 
Motivated by the increasing computer power, the improving quality of digital imaging 

and the increasing performance of digital image analysis, this algorithm assume that an 

image processor is available which is capable of detecting multiple obstacles and target, 

simultaneously from the images obtained from 2D vision sensor. It is assumed that 

obstacles are being point obstacles with known safety radius. The image processor can 

make corresponds between the present measurements of obstacles and their previous 

estimates. It is also capable of distinguishing between obstacles and target point 

(destination). 

 

3.1.2 Problem Geometry 
Figure 3.1 shows the problem geometry. For simplicity it is assumed that camera is fixed 

at UAV’s center of mass and the UAV knows its own position with reasonable certainty 

with the help of GPS and/or INS. The relationship between the locus of obstacle’s 

projection on image plan and its relative position can be easily shown from Figure 3.1 

using symmetrical triangles as given by (3.1). 

 
Figure 3.1: Video Sensor Model 
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⎡ ⎤⎡ ⎤
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     (3.1) 
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here f  is focal length of the camera, [ ]
k k k k

T
r ob ob ob

X x y z=  is relative position of the 

obstacle with respect to the UAV, [ ]TV u v w= is the UAV velocity vector and 

[ ]ii T
k k kY y z=  is the locus of the obstacle projection on the image plan at time instant k . 

Objective here is to get the relative position of obstacle 
kr

X  based on measurement kY . 

Note here, equation (3.1) is a nonlinear function of relative state rX . Additionally 

measurement noise is also present, to account for that (3.1) can be rewritten as following 

equation: 

k

kk

i
obk

k ki
obobk

yy fY v
zxz

⎡ ⎤⎡ ⎤
= = +⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
     (3.2) 

here kv  is the measurement noise at time instant k . Due to nonlinearity and noise, it is 

necessary apply some filtering technique to get the best possible estimate of 
kr

X  from 

measurement kY . Extended Kalman Filter (EKF) is once such technique; next section 

provides the summary of the EKF in the context of our application. 

 

3.2 Summary of Extended Kalman Filter 
A large class of estimation problems involves nonlinear models. For several reasons, state 

estimation for nonlinear systems is considerably more difficult and admits a wider variety 

of solutions than the linear problem [20]. In a vast majority of nonlinear models 

(including ours), system states are continuously evolving and measurements are available 

only at discrete intervals of time. Therefore, continuous-discrete form of EKF best 

describes our system model. The nonlinear system dynamics and measurement model can 

be given by following equations: 

( ) ( ( ), ( ), ) ( ) ( )X t f X t U t t G t w t= +    (3.3) 

( )k k kY h X v= +     (3.4) 

Where, function f  represents the system dynamics which is a nonlinear function of state 

X , the deterministic control input U , and time t . The process noise (or disturbance 
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input) ( )w t  is white, zero mean Gaussian random process. The statistical properties of 

process noise w  can be written as: 

[ ]( ) 0

( ) ( ) ( ) ( )T

E w t

E w t w Q t tτ δ τ

=

⎡ ⎤ = −⎣ ⎦
    (3.5) 

The function h  represents the measurement equation which is a nonlinear function of the 

state X . The measurement noise v  is also white, zero mean Gaussian random process 

that is uncorrelated with process noise.  The statistical properties of process noise v  can 

be written as following equations: 

[ ] 0

( ) 0

k

T
k j k k j

T
k

E v

E v v R

E w t v

δ −

=

⎡ ⎤ =⎣ ⎦
⎡ ⎤ =⎣ ⎦

    (3.6) 

The basic assumption in EKF is that the true state is sufficiently close to the estimated 

state. Therefore, the error dynamics can be represented fairly accurately by a linearized 

first-order Taylor series expansion. So we linearize the nonlinear system around the 

Kalman filter estimate of the state. The linearized matrices are given as following 

equations: 

ˆ ( )
( )

X t

fA t
X

∂
=

∂
    (3.7) 

ˆ ( )
k

kX t

hC
X −

∂
=

∂
     (3.8) 

The expected values of the initial state and its covariance are assumed known and 

given by following equations: 

( )0 0X̂ E X=      (3.9) 

( )( )0 0 0 0 0
ˆ ˆ T

P E X X X X⎡ ⎤= − −⎢ ⎥⎣ ⎦
   (3.10) 

A weighting factor called Kalman filter gain computed using the covariance 

information, measurement covariance matrix and linearized measurement matrix given 

by (3.8). The Kalman filter gain is used to combine the propagated estimate with the new 
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measurement. This gain is defined in such a way that it minimizes the estimation error 

covariance after the update. The Kalman filter gain is given by following equation: 
1T T

k k k k k k kK P C C P C R
−− ⎡ ⎤= +⎣ ⎦     (3.11) 

New measurements are combined with the propagated state estimate to generate an 

updated estimated state. The state covariance is also updated to reflect the information 

gained through the measurement. The state and covariance update equations are: 

ˆ ˆ ˆ( )k k k k kX X K Y h X+ − −⎡ ⎤= + −⎣ ⎦     (3.12) 

( ) ( )T T
k k k k k k k k kP I K C P I K C K R K+ −= − − +    (3.13) 

 Between measurements, EKF propagates the state estimate and its covariance using 

the known nonlinear dynamics by following equations: 

ˆ ˆ( ) ( ( ), ( ), )X t f X t U t t=     (3.14) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t G t Q t G t= + +    (3.15) 

The EKF technique requires initialization of states and covariance, computation of 

Kalman filter gain, update of states and covariance followed by propagation of states and 

covariance. This process is followed in a cyclic manner except for the initialization part. 

Equation from (3.3) to (3.15) constitutes the EKF technique for continuous-time 

nonlinear systems with discrete measurements. 

 

3.3 Obstacle Position Estimation using EKF 
As stated earlier, the job of the EKF here is to get a good estimate of the obstacle position 

from noisy vision measurements. EKF is a very widely used technique for state 

estimation in nonlinear systems. This section provides details on how EKF is applied 

here. 

 

3.3.1 System Dynamics and Measurement Equation 
Initially following system dynamics are considered for UAV motion modeling, where X  

is UAV’s position vector, V  is its velocity vector and a  is the control vector. 
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x u
X y v V

z w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (3.16) 

x

y

z

u a
V v a a

w a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (3.17) 

Furthermore, the velocity along X-axis is considered to be constant i.e. 0xa = . The 

UAV is modeled as a point mass, so video sensor (camera) is assumed to be fixed at the 

UAV’s center of gravity and its orientation with respect to an inertial frame of reference 

is known. The UAV system dynamics given by (3.16) & (3.17) is linear while the 

measurement equation (3.1) is quite nonlinear function of the state vector  rX . It is not a 

good idea to have a nonlinear measurement equation while applying EKF [20], since its 

partial differentiation can lead to quite complicated Jacobean. Particularly (3.1) can lead 

to singularity issue as UAV approaches close to the obstacle 0obx → . So to work around 

these issues, it is better to shift from Cartesian system to Spherical coordinate system i.e. 

[ ]T
r ob ob obX r θ φ= . Now we measure the locus of obstacle projection on image plane 

in terms of angles i
kθ  and i

kφ , instead of measuring in terms of  i
ky  and i

kz (Figure 3.2). 

So measurement becomes a linear function of the relative obstacle position given by 

following: 

0 1 0 0 1 0
0 0 1 0 0 1k k k k

i
Tk

k ob ob ob ri
k

Y r X
θ

θ φ
φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
  (3.18) 

 

Since state vector rX  has been changed from Cartesian to Spherical coordinate 

system, the system dynamics should also be changed accordingly. 
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Figure 3.2: Measurement of Obstacle Projection on Image Plane in terms of θ  and φ  

 

The well known relationship between Cartesian and Spherical coordinates is given by 

following two sets of equations (3.19) and (3.20): 
2 2 2 2r x y z= + +     (3.19a) 

tan y
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θ =      (3.19b) 

2 2
tan z

x y
φ =

+
    (3.19c) 

and 

cos cosx r θ φ=     (3.20a) 

sin cosy r θ φ=     (3.20b) 

sinz r φ=      (3.20c) 
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differentiating (3.19a) 

2 2 2 2rr xx yy zz= + +  

since x u= , y v= , and z w=  

rr xu yv zw= + +  

after substituting (3.20a), (3.20b) and (3.20c)   

cos cos sin cos sinrr ur vr wrθ φ θ φ φ= + +  

cos cos sin cos sinr u v wθ φ θ φ φ= + +     (3.21) 

Similarly differentiating (3.19b) 

2
2

1sec y x y
x x

θ θ = − +  

2
2

1sec y u v
x x

θ θ = − +  

after substituting (3.20a), (3.20b) and (3.20c) 

2
2

sin cos 1sec
( cos cos ) cos cos

r u v
r r

θ φθ θ
θ φ θ φ

 = − +  

sin cos
cos cos

u v
r r

θ θθ
φ φ

= − +     (3.22) 

Finally differentiating (3.19c) 

2
2 2 3/ 2 2 2 3/ 2 2 2

1sec
( ) ( )

xz yzx y z
x y x y x y

φ φ = − − +
+ + +

 

2
2 2 3/ 2 2 2 3/ 2 2 2

1sec
( ) ( )

xz yzu v w
x y x y x y

φ φ = − − +
+ + +

 

after substituting (3.20a), (3.20b) and (3.20c) 

cos sin sin sin cosu v w
r r r

θ φ θ φ φφ = − − +    (3.23) 

By combining (3.21), (3.22) & (3.23), the system dynamics become a nonlinear 

function of the state vector given by following: 
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cos cos sin cos sin
sin cos

cos cos
cos sin sin sin cos

ob ob ob ob ob
ob

ob ob
r ob

ob ob ob ob
ob

ob ob ob ob ob

ob ob ob

u v wr
X u v

r r

u v w
r r r

θ φ θ φ φ
θ θθ

φ φ
φ

θ φ θ φ φ

⎡ ⎤
⎢ ⎥+ +⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥= = − +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
− − +⎢ ⎥

⎢ ⎥⎣ ⎦

 (3.24) 

 

3.3.2 Measurement Noise Model 
Usually the measurement data from vision sensor is inaccurate and noisy. It is assumed 

that measurement noise is zero mean Gaussian process. Another assumption is that the 

magnitude of the measurement noise is a function of object range i.e. higher the distance 

between the sensor and the object, higher will be the measurement uncertainty. It is a 

reasonable assumption since it is common knowledge that closer you get to an object, 

higher will be the quality of the visual information obtained. Based on this philosophy, a 

function of range has been devised to calculate the measurement noise covariance. First 

we calculate the maximum amount of noise that can be added by following function. 

0 (1 )kob
k

rr r δ= −     (3.25) 

here kr  is the maximum percentage noise at time instant k , 0r  is a constant which 

represents the highest possible amount of percentage measurement noise (as obr → ∞ ), 

kobr  is the range of the object at time instant k , and δ  is a parameter (close to 1) which 

defines how kr  changes with change in 
kobr . Again based on common knowledge on 

visual sensing, it is assumed that kr  changes slowly for higher range value and drops 

quickly for lower values of range. Figure 3.3 shows variation in kr  with range from zero 

to 1000 meters for 0 20r =  and 0.99δ = . 
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Figure 3.3: Measurement Noise as a function of Object Range 

After calculating the maximum percentage noise at time instant k  by (3.25), we 

calculate the measurement noise covariance by following equation: 
21

100 3
V

k k
WR r⎛ ⎞= ×⎜ ⎟

⎝ ⎠
    (3.26) 

here VW represents the angular width of the camera’s field of view. Here it is assumed 

120°  on both horizontal and vertical axis. The whole expression inside the bracket 

represents the standard deviation of the measurement noise. Since noise is normally 

distributed, above equation insures that measurement noise will be bounded by kr  or 3σ  

for almost all of the cases (more than 99%).  

 

3.3.3 Process Noise Model 
Any real system whether linear or nonlinear has some amount of process noise. Process 

noise arise from parameters which are not modeled in system dynamics either because 

their very small effect or because of their mathematical intractability. For example, in our 

model, the effects of atmosphere such as random wind gusts, variation of gravity with 

altitude etc are ignored. However, they do have some effect over the system dynamics 

and hence it is necessary to accommodate them in our system model. The process noise is 

modeled by adding fictitious noise ( )w t  in system dynamics. The process noise is 
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considered as Gaussian random input. The system dynamics given by (3.24) can be 

rewritten to account for process noise as following: 

cos cos sin cos sin
sin cos ( ) ( )

cos cos
cos sin sin sin cos

ob ob ob ob ob

ob ob
r

ob ob ob ob

ob ob ob ob ob

ob ob ob

u v w

X u v G t w t
r r

u v w
r r r

θ φ θ φ φ
θ θ

φ φ
θ φ θ φ φ

⎡ ⎤
⎢ ⎥+ +⎢ ⎥
⎢ ⎥

= − + +⎢ ⎥
⎢ ⎥
⎢ ⎥
− − +⎢ ⎥

⎢ ⎥⎣ ⎦

 (3.27) 

here ( )G t  is the process noise realization matrix and ( )w t  is zero mean Gaussian noise 

with covariance given by (3.5). It is a reasonable assumption that process noise 

covariance ( )Q t  can be considered constant for a given system over a short period of 

time, hence can be denoted as just Q . Additionally process noise in each state element is 

considered to be independent of each other hence process noise realization matrix will be 

unity i.e. ( )G t I= . 

 

3.3.4 Initialization of the EKF 
Initialization of the EKF requires initial value of the state vector and initial error 

covariance matrix. However, knowing these two quantities at start is not possible in most 

of the real systems. That’s why it requires some amount of priori information or some 

empirical knowledge of the system to make an educated guess. 

 

As stated earlier, assuming that UAV is equipped with an image processor capable of 

identifying all the obstacles present in its view field, EKF is initialized based on the first 

processed image. The number of obstacles in the first image defines the length of state 

vector. For example, if image contains two obstacles and target (or waypoint), then the 

state vector will consist of 9 elements, where each 3 elements will represent the relative 

position of one of the three objects (whose position needs to be estimated). Similarly in 

case of one obstacle and target, state vector will contain only 6 elements, as shown in 

following equations (3.28) and (3.29) respectively: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 0 0 0 0 0 0 0 0 0

T

r ob ob ob ob ob ob tr tr trX r r rθ φ θ φ θ φ=  (3.28) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ0 0 0 0 0 0 0
T

r ob ob ob tr tr trX r rθ φ θ φ⎡ ⎤= ⎣ ⎦  (3.29) 

 
Since obstacles are assumed to be point obstacles, it is not possible for an obstacle to 

appear from behind another obstacle. So there is no need to augment the state vector to 

accommodate newly discovered obstacle while EKF is running. However, it is not a 

realistic assumption and needs to be relaxed in future studies. 

 

• Initialization of State Vector: For simplicity of discussion, we will keep state vector 

3 elements long i.e. we will estimate the position of one object only. State vector can 

be augmented in case of simultaneously estimating the multiple objects. The first 

image contain the θ  and φ  information (with measurement noise) of the object needs 

to be estimated. However, 2D vision sensing does not contain any information about 

the range or r . For initialization purpose, range of the object is assumed known with 

50% uncertainty. Following equation shows initialization of state vector. 

( ) ( ) ( ) ( )ˆ ˆˆ ˆ0 0 0 0
T

r ob ob obX r θ φ⎡ ⎤= ⎣ ⎦    (3.30) 

here ˆ (0)obr  is known as 50% error while ˆ (0)obθ  and ˆ (0)obφ  are based on first 

measurement taken and initial measurement noise given by (3.25). Initial estimation 

of an object requires some amount of priori information (in the form of their range 

information). The θ  and φ  estimates will be better for the closer objects (because of 

lower measurement noise) which is consistent with the fact that we will have better 

visual for the objects which are closer to us. 

 

• Initialization of Error Covariance Matrix: Theoretically, the error covariance 

matrix is given by following: 

( )( )0
ˆ ˆ(0) (0) (0) (0)

T

r r r rP E X X X X⎡ ⎤= − −⎢ ⎥⎣ ⎦
   (3.10) 

here (0)rX  is the actual initial value of the state vector while ˆ (0)rX  is the initial 

estimation of the state vector. However, (0)rX  is not known so the initialization of 

error covariance matrix requires some idea of uncertainty in initially estimated state. 
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0P  should be sufficiently high enough to contain maximum amount of error in the 

initial state estimation. Based on known initial uncertainty in range estimation and 

initial measurement noise,  0P  is initialized as the following diagonal matrix: 

2 2
2 0 0

0 1 2 3100 100
V Vr W r WP diag a e a a

⎛ ⎞× ×⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
   (3.31) 

here e  is the maximum range measurement uncertainty (in meters) given by the 50% 

of the distance between the start point and the destination, 0r  is maximum percentage 

measurement noise. 1a , 2a  and 3a  are scalar parameters, which needs to be tuned 

based on trial and error. VW  is camera’s width of view (in radians). Initially it is 

assumed that estimation errors are independent of each other i.e. error in one state 

element does not affect the others and so on. Note that the dimensions of P  matrix 

will depend on the length of the state vector. For example in case of a state vector 

with six elements, 0P  matrix will be a 6 6×  diagonal square matrix. 

 

3.3.5 Pre-Run of EKF 
While applying EKF, it is highly recommended that filter run sufficiently ahead of time 

so that initial error can be stabilized before its actual application. Since our system is a 

closed loop system, if error in initial estimation is high, the corresponding control can 

completely destabilize the whole system. Hence we start EKF 10 seconds before applying 

any control i.e. UAV fly towards its initial velocity vector and EKF just estimate the 

relative position of the obstacles and target without applying any guidance. In other 

words, system behaves like an open loop system during the pre-run of EKF. After that, it 

reinitializes the ˆ (0)rX  as the average of all previous estimates as given by (3.32) and 0P  

again as (3.31).  

1

1ˆ ˆ(0) ( )
N

r r
i

X X i
N =

= ∑      (3.32) 

here N  is the number of estimations made by EKF during pre-run. After reinitializing 

the state vector and error covariance matrix, the system transforms into a closed loop 
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system and starts applying the control based on estimated relative position of the 

obstacle/s and target. 

 

3.3.6 Propagation of State and Error Covariance 
The operation of EKF can be divided into two phases, Propagation and Updation. In 

propagation phase, EKF predicts the next state based on previous state and known system 

dynamics i.e. propagation of state from posterior estimate at time instant k  to a priori 

estimate at 1k +  or mathematically 
1

ˆ ˆ
k kr rX X

+

+ −→ . Based on the system dynamics derived 

in (3.24), the state propagation equation of our system is given by following: 

ˆ ˆ ˆ ˆ ˆcos cos sin cos sin
ˆ ˆsin cosˆ

ˆ ˆˆ ˆcos cos
ˆ ˆ ˆ ˆ ˆcos sin sin sin cos

ˆ ˆ ˆ

ob ob ob ob ob

ob ob
r

ob ob ob ob

ob ob ob ob ob

ob ob ob

u v w

X u v
r r

u v w
r r r

θ φ θ φ φ

θ θ
φ φ

θ φ θ φ φ

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥
⎢ ⎥= − +
⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎢ ⎥⎣ ⎦

  (3.33) 

here [ ]TV u v w= is present relative velocity vector between the UAV and the object 

being estimated. Since in this study only stationary obstacles are considered, vector 

UAVV V= −  i.e. negative of UAV velocity vector UAVV  and ˆ ˆˆ ˆ[ ]T
r ob ob obX r θ φ=  is 

previous estimate of the relative position of the object being estimated. 

 

After propagating the state vector, we propagate the error covariance matrix or the P  

matrix. The P  matrix propagation equation is given in section 3.2 EKF summary. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t G t Q t G t= + +    (3.15) 

Since ( )G t I=  (from section 3.3.3) and ( )Q t  is constant (can be denoted as just Q ), 

above equation can be modified as following equation: 

( ) ( ) ( ) ( ) ( )TP t A t P t P t A t Q= + +    (3.34) 

here 
ˆ ( )

( )
r rX t

fA t
X
∂

=
∂

 i.e. partial differential of the nonlinear state equation with respect 

to the state vector evaluated at a priori estimate of the state vector. The expression for the 
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matrix ( )A t  is derived next in this section. After partially differentiating rX  (System 

dynamics given by (3.24)) with respect to state vector rX , the matrix A  is given by 

following expression. 

2 2

2

0 cos ( sin cos ) cos sin sin sin cos

sin cos cos sin sin ( sin cos )

cos cos cos

cos sin sin sin cos sin ( sin cos ) cos cos sin cos sin

u v u v w

u v u v u v
A

r r r

u v w u v u v w

r r r

φ θ θ θ φ θ φ φ

θ θ θ θ φ θ θ

φ φ φ

θ φ θ φ φ φ θ θ θ φ θ φ φ

− + − − +

− + − +
=

−

+ − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(3.35) 

3.3.7 Updation of State and Error Covariance 
In Updation phase of operation, EKF updates or corrects the previously predicted state 

and error covariance based on the newly arrived measurements. After getting the 

measurements according to the following equation 

0 1 0
0 0 1 kk r kY X v⎡ ⎤

= +⎢ ⎥
⎣ ⎦

    (3.36) 

here kv  is the zero mean Gaussian noise with covariance given by (3.14). Next step 

before Updation is to compute the Kalman Gain by following: 
1T T

k k k k k k kK P C C P C R
−− −⎡ ⎤= +⎣ ⎦     (3.37) 

here  

0 1 0
ˆ 0 0 1

k

k
r

hC
XXr −

⎡ ⎤∂⎡ ⎤= = ⎢ ⎥⎢ ⎥∂⎣ ⎦ ⎣ ⎦
    (3.38) 

and kR  is measurement noise covariance given by measurement noise model described in 

section 3.3.2. After calculating the Kalman gain, next is update the state estimate and 

error covariance matrix based on following equations: 

ˆ ˆ ˆ( )
k k kr r k k rX X K Y h X+ − −⎡ ⎤= + −⎣ ⎦     (3.39) 

( ) ( )T T
k k k k k k k k kP I K C P I K C K R K+ −= − − +    (3.40) 

As seen above, the Kalman gain is a very important parameter in the EKF Updation 

phase. Kalman gain defines where to pay more attention while updating the state estimate 

between measurements and system dynamics. From above equations it is clear that higher 
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the Kalman gain, higher will be the effect of the measurements over the state Updation 

and vice versa. 

 

3.3.8 Smoothing of Estimate 

Due to measurement uncertainties, sometimes due to momentarily high noise position 

estimates tend to fluctuate i.e. newly estimated object position differs too much from 

previous estimates. Since it is a closed loop system, these fluctuations can produce large 

associative control accelerations and which can severely destabilize the whole system. 

 

To avoid that, it is better to smooth the new estimate with respect to the previous 

estimates i.e. instead of using the current estimate only for guidance purpose, first take 

the average of current estimate with few previous estimates and then apply the guidance 

according to the averaged or “smoothed” estimate. Deciding how many previous 

estimates used for smoothing operation should be done carefully. It is a tradeoff between 

trusting a newly arrived estimate and trusting previous estimates. If we use too many 

previous estimates, the effect of any new estimate will almost zero. Similarly, too few 

previous estimates will not affect a large estimation fluctuation at all. Since we are using 

a range dependent measurement noise model, the measurements are improving as UAV is 

getting closer to the object. Thus more emphasis should be given to the newly arrived 

estimates. Based on this philosophy, after some trial runs it is found out that algorithm 

works best while smoothing operation is performed with ten previous estimates. The 

smoothing operation performed by following equation. Note that smoothing is only 

required after the pre-run of EKF is over and system is working as a closed loop system. 

1

1ˆ ˆ
k i

k

r r
i k n

X X
n = − −

= ∑           (3.41) 

here n  is the number of previous estimates used for smoothing operation ( 10n =  in our 

case), ˆ
kr

X  is smoothed estimate and ˆ
kr

X  original estimate at time instant k . 
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3.3.9 Tuning of EKF 
After developing the whole EKF, its tuning is the final step. Tuning of EKF requires 

proper selection of parameters Q , 0P  and kR . As stated earlier, EKF is fragile in nature 

i.e. it works well only for a narrow band of Q , 0P  and R  parameters. Hence tuning of 

EKF should be done carefully. 

 

Since we are using a range dependent measurement noise model, parameter kR  is fixed 

by measurement noise model given by (3.26). In case of one obstacle and target 

estimation, kR  is given by following formula: 

2 2 2 21 1 1 1
100 3 100 3 100 3 100 3k k k k

V V V V
k ob ob tr tr

W W W WR diag r r r r
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × × × ×⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

    (3.42) 

here VW  is the angular width of the camera’s view and assumed to be 2
3

π radians (120 ) 

for both vertical and horizontal axis. 
kobr  and 

ktrr  are the maximum percentage noise in 

measurement of angles for obstacle and target respectively. They are calculated by (3.25) 

given in section 3.3.2 based on range dependent measurement noise model. 

 

(0)P  is selected by some prior information about error in initial estimation of state. This 

knowledge can be empirical or can be an educated guess. It is given by following 

equation (3.43) for simultaneous estimation of an obstacle with target: 

0 0 0 0

2 2 2 2
2 2

0 1 2 3 4 5 6100 100 100 100
ob V ob V tr V tr V

ob tr

r W r W r W r W
P diag a e a a a e a a

⎛ ⎞× × × ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.43) 

here obe  and tre are the maximum range estimation uncertainty for obstacle and target 

respectively (in meters given by the 50% of the distance between the start point and the 

destination) and assumed known. 1a , 2a , 3a , 4a , 5a  and 6a  are scalar parameters, which 

are tuned to following values with trial and error method. 
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1 4

2 5

3 6

1 1
2 2
2 2

a a
a a
a a

= =
= =
= =

     (3.44) 

The process noise covariance Q  set to: 

( )0.2 0.025 0.025 0.2 0.025 0.025Q diag=   (3.45) 

here the diagonal elements of Q  matrix are selected through trial and error method. First 

and fourth diagonal elements of Q  matrix represent the process noise covariance (in 

meter) for the range elements of the state vector shown in equation (3.29). Similarly 

second, third, fifth and last diagonal elements represent the process noise covariance for 

angle elements (in radians) of state vector. 
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Chapter 4  

Guidance and Navigation 
Once the obstacle position is estimated, the objective reduces to applying the guidance to 

navigate the UAV around it. Now first task is to finding out whether obstacle is critical 

i.e. if collision with obstacle is imminent. For that Collision Cone approach is applied. 

This technique detects collisions and computes an alternate aiming point (if necessary). 

Then the geometry of the resulting guidance problem is analyzed. These steps aid in 

forming the guidance objective. Finally two nonlinear guidance laws used to achieve the 

guidance objective, Nonlinear Geometric Guidance (NGG) and Differential Geometric 

Guidance (DGG) are explained. 

 
4.1 The Collision Detection and Aiming Point Computation 
The UAV must detect an imminent collision and avoid it safely. The “collision cone" [3] 

is an effective tool for: 

(i) Detecting collision 

(ii) Finding an alternate direction of motion that will avoid the collision 

In this approach, a collision cone is constructed and analyzed for every obstacle. The 

collision cone approach is used to find a safe aiming point apX  and the time-to-go to the 

aiming point got . A suitable guidance law should then be used to steer the UAV to an 

aiming point apX  in time got . The construction of the collision cone is shown in Figure 

4.1. A spherical safety boundary of radius d  is constructed around the obstacle. An 

obstacle is considered to be critical if the UAV is expected to violate the safety boundary 

in future. rX  is the relative distance between the UAV and the obstacle and V  is the total 

velocity. Since the collision cone approach operates in two dimensions, the plane 

containing rX  and V  is considered for constructing the cone. The safety boundary thus 

reduces to a circle β  in this plane. A collision cone is constructed by dropping tangents 

from the UAV to the circle β . If the velocity vector V  lies within the collision cone, the 
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UAV will violate β  in due course and result in collision. Thus the obstacle is said to be 

critical. From Figure 4.1, V can be expressed in terms of the tangents 1r  and 2r  as 

follows: 

1 2V ar br= +       (4.1) 

 

 
Figure 4.1: Construction and analysis of the collision cone 

 
The collision criterion is stated as: 

If 0a >  AND 0b > , the obstacle under consideration is said to be critical 

The aiming point is then found from the collision cone. First, the tangents 1r  and 2r  

are found as follows: 

1 1

2 2

r

r

r X du
r X du

= +
= +

     (4.2) 

 
where 1u  and 2u  are the unit vectors perpendicular to the tangents. The aiming point is 
determined in the following way: 
 

1

2

,

,
ap v

ap v

if a b X X r

f b a X X r

 >  = +

 >  = +
    (4.3) 

 
Since the velocity in x direction is assumed constant, the time-to-go got  is found as 

follows: 

 

vX  

a  

b  

V  

1r  

2r  

rX  
obsX  

1du  

2du  

Aiming Point apX  

Safety Circle β

[ ]T
d d dx y z

Goal
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1 [( ) ( ) ]go ap x v xt X X
u

= −    (4.4) 

 
The expressions for a , b  and apX  are derived in Appendix A. Two practical issues 

are expected to arise in the implementation of the collision cone approach. We list these 

issues and describe the solution methodology for each. 

 
• Obstacle safety bound violation after aiming point is reached: An obstacle may be 

considered critical only so long as the vehicle is behind it (i.e., the x-coordinate of the 

vehicle is less than the x-coordinate of the obstacle). Once the UAV is past an aiming 

point, it immediately looks to maneuver towards the next aiming point. This may 

result in a brief violation of the first obstacle's safety bound if the direction of the new 

aiming point lies in the opposite side of the safety sphere. Such a scenario is 

illustrated in Figure 4.2. In order to remedy this, a sphere-tracking algorithm is 

activated when rX d< . The sphere tracking algorithm computes a new aiming point, 

called the virtual aiming point which is a point on the surface of the safety sphere. 

This is found by radially extending the original relative distance line rX  until it 

meets the surface of the safety sphere. The UAV then aims for the virtual aiming 

point until rX d> . The mathematical details of the sphere tracking algorithm may be 

found in Appendix B. 

• Intersecting obstacle safety boundaries: Figure 4.3 illustrates the problem of safety 

boundary intersection. It is apparent from the vehicle's orientation that obstacle-1 is 

critical, and that the UAV must aim towards 2pX  ( 1pX  and 2pX  are the two choices 

for the aiming point calculated from the collision cone approach). However 2pX  is 

clearly illegal as it lies within the safety circle of obstacle-2. The algorithm must 

therefore be able to identify this issue and maneuver the UAV to 1pX  . We solve this 

by determining the center P2 of the intersecting area of the two circles [26]. 

1 0
2 0

P PP P m
l
−⎛ ⎞= + ⎜ ⎟

⎝ ⎠
    (4.5) 
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where 1 0|| ||l P P= − and 
2 2 2

0 1

2
l r rm

l
+ −

= . We then choose the aiming point that is 

farther away from P2, i.e., 

1 2 2 2 1

1 2 2 2 2

|| || || ||,

|| || || ||,
p p ap p

p p ap p

if X P X P then X X

if X P X P then X X

 −  ≥ −    =

 −  ≤ −    =
  (4.6) 

 

 
Figure 4.2: Safety boundary violation after aiming point is reached 

 
The collision cone approach constitutes an effective tool for detecting impending 

collisions and finding an aiming point. The collision avoidance problem then becomes 

one of guiding the UAV from 0( )v inX t X=  to 0( )v go apX t t X+ = . Note that when no 

obstacles are critical ap dX X= . The collision avoidance problem therefore becomes 

similar to a sequential target interception problem. 

 

Radially outward 

( ),v v v vX x y z  , 

( ),vap vap vap vapX x y z  ,  

( ),ob ob ob obX x y z  , 

1apX

2apX  

rX
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Figure 4.3: Intersection of safety boundaries of two obstacles 

 

4.2 Geometry of the Guidance Problem 
The guidance objective is to align the velocity vector to the aiming line so that collision is 

avoided. The aiming line is the line joining the aiming point apX  to the center of gravity 

of the vehicle, in the case of stationary obstacles. The problem geometry is shown in 

Figure 4.4. u , v  and w  are the velocity components along the x, y and z directions 

respectively, and ya v= , za w=  are the accelerations applied in the y and z directions 

respectively. Note that the velocity u  is assumed to be a constant. 

 

The angle θ  between the total velocity vector and the aiming line is to be eliminated. 

In order to formulate a guidance which computes the controls ya  and za  that would 

eliminate θ , we consider the 3D problem as a combination of two separate 2D problems 

in the XY and XZ planes. ( )ap XYX  and ( )ap XZX  are the projections of the aiming line on 

0r  1r  h

0P  
Obstacle1 

1P  
Obstacle2 

3P  

2P  a  b  

UAV

1apX  

2apX  
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to the XY and XZ planes respectively, while XYV  and XZV  are projections of the velocity 

vector on to the XY and XZ planes respectively. The orthogonal projection PV  of a vector 

V onto a plane with basis vectors 1X  and 2X  is [27] 

1 1 2 2pV c X c X= +     (4.7) 
 

 
Figure 4.4: Geometry of the guidance problem in 3D 

 
1c  and 2c  are found as follows: 

1 1

2

[( ) ]T Tc
X X X V

c
−⎡ ⎤

=  ⎢ ⎥
⎣ ⎦

    (4.8) 

 

where [ ]1 2
TX X X= . The basis vectors in the problem under consideration are the unit 

vectors along the X, Y and Z axes i.e. 

 
1 0 0
0 1 0
0 0 1

X Y
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=  , = , Ζ =  ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    (4.9) 

 

yθ  

θ  

u  

v

w  

zθ  
XYV  

( )ap XY
X

( )ap XZ
X

*v

*w  

V  

vX  

XZV  
apX  

3D 
XY plane
XZ plane



 42

yθ  is the angle between ( )ap XYX  and XYV  and zθ  is the angle between ( )ap XZX  and 

XZV . The guidance objective is restated as: compute the controls ya  and za  to eliminate 

yθ  and zθ  respectively in the two independent XY and XZ planes. 

 

4.3 2D Decomposition of the 3D Guidance Problem 
Figure 4.5 shows the geometry of the guidance problem in the XY plane. Due to 

symmetry, the geometry of the problem in XZ plane is the same. 

 
Figure 4.5: Geometry of the guidance problem in 2D 

 
When the velocity vector XYV  is perfectly aligned with the aiming line apX , the y-

component of the velocity vector changes to a new value, *v  ( *w  in the XZ plane). Note 

that in keeping with the kinematics of the UAV, the x-velocity u  remains constant. *v  is 

found by the intersection of the lines 1l  and 2l . The points ( ,0)B u , *( , )E u v  and ( , )C u v  

lie on the line 1l  i.e., 

1 :l x u =      (4.10) 
The points (0,0)A , *( , )E u v  and ( , )ap ap apX x y  lie on the line 2l . The equation of 2l  

using the two-point form of equation of the line is: 

2 :
ap ap

y xl
y x

 =      (4.11) 

A ( )0,0  B ( ), 0u  

C ( ),u v  
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D ( )0,v  
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The point E  is the intersection of the lines 1l  and 2l . We substitute (4.10) into (4.11) 

in order to find *v , the y-coordinate of E  

* ap

ap

y
v u

x
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

     (4.12) 

Since u  is considered to be a constant and apX  is a constant point, *v  at each instant. 

 

4.4 Guidance Strategy 
This section describes two guidance strategies used to navigate the UAV in order to avoid 

collision. The two new guidance strategies are Differential Geometric Guidance (DGG) 

and Nonlinear Geometric Guidance (NGG) proposed in [4]. 

 

4.4.1 Nonlinear Geometric Guidance 
The Nonlinear Geometric Guidance (NGG) law is as follows: 

ˆ sin
ˆ sin

v yy

z w z

ka
a k

θ
θ

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
    (4.13) 

The control is thus a nonlinear function of the aiming angle θ . An advantage that 

immediately presents itself is that the range of the sine function is [ 1,1]−   whereas the 

range of θ  is [ , ]−∞  ∞ . This indicates that the acceleration in NGG is always bounded, 

provided v̂k  is bounded. 

The gains v̂k  and ˆ
wk  can be selected as constants with some tuning. However, it is 

not a good idea to have constant gains, because when got  is low, high control needs to be 

generated and vice-versa. Hence control gains are set inversely proportional to got  as 

given by following equation: 

v̂
go

ak
tα

=  

ˆ
w

go

bk
tβ

=  
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here a , b , α  and β  are tuning parameters which are set to following values through 

trial and error. 

4 0.6
4 0.6

a
b

α
β

= =
= =  

 

4.4.2 Nonlinear Differential Geometric Guidance 
In order to achieve alignment of the velocity vector with the aiming line, the control ya  

should be designed so that the y-velocity v  approaches *v  in time got . The nonlinear 

Differential Geometric Guidance (DGG) is based on Dynamic Inversion (DI) [28, 29], a 

control strategy used for output tracking of nonlinear systems. The principle of DI is to 

drive a stabilizing error dynamics (chosen by the designer) to zero. The main advantage 

of DI is that it essentially guarantees global asymptotic stability with respect to the 

tracking error. 

We now describe the DI guidance design. Let the error be 
*

ve v v= −      (4.14) 

Imposing the first order error dynamics 

0v v ve k e+ =      (4.15) 

i.e.  
* *( ) ( ) 0vv v k v v− + − =     (4.16) 

With quasi-steady approximation (i.e. assuming u  is a constant at every instant of 

time), *v  is a constant. In addition yv a= , from the system dynamics. The DI based 

guidance law is hence derived to be: 
*( )y va k v v= − −     (4.17) 

We call the expression of ya  in (4.17) the “Dynamic Inversion Guidance” law, or the 

“Nonlinear Differential Geometric Guidance” (DGG) law, since the guidance strategy is 

derived based on the derivative of the error. The constant vk  is designed such as the 

settling time (i.e. the time taken to align the velocity vector with the aiming line) is 

inversely proportional to the got , i.e. 1
v

v

k
τ

=  where vτ  is the desired time constant of the 
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error dynamics. Note that vτ  can be selected by choosing an appropriate settling time SvT  

, since for linear systems theory, 
4
Sv

v
Tτ = . 

Furthermore one can choose SvT  as Sv goT tα= , 0 1α< < . Such a guidance strategy 

ensures that a larger control is generated for an obstacle that is nearer (i.e. the got  is 

smaller). The guidance strategy in (4.17) is proportional to the error in the y-velocity, and 

thus produces a large control input at the beginning which effects quick settlement along 

the aiming line. Two factors influence the control ya : 

• got : The gain vk  is designed to be inversely proportional to got  so that larger 

control is demanded for obstacles that are closer. 

• α : The choice of α  determines the speed of settling of the control. If the value of 

α  is close to 1, the settling is slow and consequently, the peak in control is low. 

However if fast settling is desired, a high value of α  will effect this. However 

faster settling results in a higher peak in control. 

If both the got  and α  are small, the peak in control may become unfeasibly large and 

result in control saturation. The value of α  must therefore be chosen judiciously based 

on the requirement of speed of alignment. Since reactive collision avoidance requires 

quick maneuvering, a value of α  between 0.3 and 0.8 are suitable. Slower maneuvers 

with 0.8α >  may be suitable for flying to the destination. 

In an analogous manner, the expression for za  in XZ plane can be derived as 

*( )z wa k w w= − −     (4.18) 

1
w

w

k
τ

=      (4.19) 

and 

4Sw wT τ=      (4.20) 

where 

Sw goT tβ=      (4.21) 

We examine the stability of the DI-based guidance strategy with respect to the error. 

The error is defined as: 
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*

*
v

w

e v v
e w w

⎡ ⎤−⎡ ⎤ = ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦
                    (4.22) 

The error dynamics are described as follows: 

0
0

v v v

w w w

e k e
e k e

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
     (4.23) 

Equation (4.23) constitutes a linear time-varying system. Consider a linear time-

varying system of the form ( )x A t x= . The system is determined to be asymptotically 

stable if the symmetric matrix ( ) ( )TA t A t+  has all eigen values lying the left half of the 

complex plane [30]. In the system in (4.23), the eigen values of ( ) ( )TA t A t+  are 2 vk−  

and 2 wk− . Since vk  and wk  are inversely proportional to the got , they are strictly positive. 

Therefore both the eigen values lie strictly on the left-half of the complex plane, and the 

system in (4.23) is asymptotically stable. 

 

4.4.3 Correlation of DGG and NGG 
The DGG law is equivalent to the NGG law, if control gains vk  and wk  are set as given 

by following formula. 

2 2 2 * 2
ˆ

( )
v v

uk k
u v u v

⎛ ⎞
⎜ ⎟=
⎜ ⎟+ +⎝ ⎠

       (5.6) 

2 2 2 * 2
ˆ

( )
w w

uk k
u w u w

⎛ ⎞
⎜ ⎟=
⎜ ⎟+ +⎝ ⎠

         (5.7) 

here [ ]TV u v w=  is the UAV velocity vector. *v  and *w  are desired Y velocity and Z 

velocity respectively. 

 

With above gain settings for DGG, the controls generated by it will be exactly same 

as controls generated by NGG law. Thus both guidance strategies are directly correlated. 

The NGG will therefore possess all the advantages of DGG discussed in previous section. 
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Chapter 5  

Results 
The EKF based estimation technique developed in this study is tested in a number of 

numerical experiments for two scenarios i.e. Single Obstacle with Target Estimation and 

Two Obstacles with Target Estimation in 3D separately for each of the guidance strategy. 

Additionally to check the consistency of the EKF, the Sigma-bound test was performed. 

The results of Sigma-bound test are also presented in this Chapter. 
 

5.1 Success Criterions 
The success of the algorithm was tested on three criterions: 

• Violation of the safety sphere 

• Divergence from the safety sphere 

• UAV’s Target Miss Distance 

  

Important thing to note here is that while our primary objective is to avoid the 

obstacle, at the same time UAV should not diverge too much from its path in the process. 

If the estimate of the obstacle position is good then UAV’s closest approach with the 

obstacle should be roughly equal to the radius of the safety sphere, since obstacles appear 

almost at the direct path between start point and destination. Both, too much violation of 

safety sphere and too much divergence from it, indicate that obstacle position estimates 

were not good enough. 

 

The final success criterion represents how close UAV gets to the target. To calculate 

the UAV’s target miss-distance, a second order curve was fitted among closest approach 

point, one before it and one after it. Following equations show how target miss-distance 

was calculated. 
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2

2

2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

f f f

f f f

f f f

R t t a b t t c t t

R t a b t c t

R t t a b t t c t t

− Δ = +  − Δ +  − Δ

       = +  +  

+ Δ = +  + Δ +  + Δ

   (5.1) 

here ( )R t  is the distance of the UAV from the target at time t . a , b  and c  are 

coefficients of a second order function and calculated by following equations. 
2

2

2

1 ( ) ( )( )
( ) 1 ( ) ( )

( ) 1 ( ) ( )

f ff

f f f

f f f

t t t tR t t a
R t t t b

cR t t t t t t

⎡ ⎤− Δ − Δ⎡ ⎤− Δ ⎡ ⎤⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥+ Δ ⎣ ⎦+ Δ + Δ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (5.2) 

 
12

2

2

1 ( ) ( ) ( )
1 ( ) ( ) ( )

( )1 ( ) ( )

f f f

f f f

ff f

t t t t R t ta
b t t R t
c R t tt t t t

−
⎡ ⎤− Δ − Δ ⎡ ⎤− Δ⎡ ⎤ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ + Δ⎣ ⎦ + Δ + Δ⎢ ⎥ ⎣ ⎦⎣ ⎦

  (5.3) 

After computing a , b  and c , the time of UAV’s closest approach mint  calculated by 

(5.4) and then target miss-distance is calculated using (5.5). 

min 2
bt
c

= −       (5.4) 

2
min min min min( ) ( ) ( )R t a b t c t= +  +     (5.5) 

Based on these success criterions, different segments of success are created defined 

by the band of the closest approach of the UAV with obstacles and target. These 

segments of success are named as S-1, S-2, S-3 and S-4 where each increment represents 

slightly relaxed success conditions i.e. width of the tolerable closest approach band is 

increased so S-1 represents the strictest conditions while S-4 represents most relaxed 

case. These conditions are described in Table I. 

TABLE I: Different Success Bands 

Success 

band 

Tolerable Safety Sphere 

Violation (as % of the 

Safety Sphere Radius)  

Tolerable Divergence from 

Safety Sphere (as % of the 

Safety Sphere Radius) 

UAV’s Target Miss 

Distance (m) 

S-1 10% 10% < 10 

S-2 20% 20% < 10 

S-3 30% 30% < 10 

S-4 40% 40% < 10 
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5.2 Single Obstacle with Target Estimation 
The experiments with a single stationary obstacle involve a finite space with one point 

obstacles with a known safety sphere radius. The position of the obstacle is randomly 

chosen in each simulation run making sure it obstructs the path of the UAV. The initial 

velocity of the UAV is also chosen randomly uniformly distributed between following 

limit (in meters per second). 

5 20
5 5
5 5

u
v
w

     ≤ ≤
− ≤ ≤
− ≤ ≤

     (5.6) 

For first 10 seconds of the simulation, no control is applied and EKF estimates the 

obstacle and target positions in an open loop system (pre-run). After the pre-run, EKF 

reinitializes the state vector and error covariance and then system applies one of the two 

navigation law in order to find a collision free path. Figure 5.1 shows an example 

scenario of 3D space where simulations are being conducted. 

 
Figure 5.1 Finite 3D Space with One Obstacle 

5.1.1 DGG Navigation Strategy 
In this part of the experiments, DGG navigation law was applied in order to find a 

collision free path. A total of 1000 simulation runs performed in order to test the 

effectiveness of the DGG navigation law while estimating the obstacle and target position 

with EKF. Based on the success criterion described in section 5.1, following Table II 

shows the percentage of successes. 

Start 

Destination 

Obstacle with Safety Sphere 

Y axis 

X axis 

Z axis 
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TABLE II: Success Percentage with DGG Navigation 
Success band % Run Satisfying the Success Conditions 

S-1 51.3 

S-2 73.8 

S-3 84.1 

S-4 90.5 

 

The Figure 5.2 shows the UAVs closest approach with obstacle as the Percentage of the 

safety sphere radius. In Figure 5.2 different color lines represent the different success 

bands. The Figure 5.3 shows the final distance of UAV from the destination. In this 

Figures, Black dots represent the successful case while Red dots represent the failures. 

 
 

Figure 5.2: UAV’s Closest Approach to Obstacle with DGG Navigation 
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Figure 5.3: UAV’s Target Miss-Distance with DGG Navigation 

 

5.1.2 NGG Navigation Strategy 
Here NGG navigation law was applied in order to find a collision free path. Again a total 

of 1000 simulation runs performed in order to test the effectiveness of the NGG 

navigation law while estimating the obstacle and target position with EKF. Based on the 

success criterion described in section 5.1, following Table III shows the Percentage of 

successes. 

TABLE III: Success Percentage with NGG Navigation 
Success band % Run Satisfying the Success Conditions 

S-1 50.1 

S-2 72.5 

S-3 84.1 

S-4 91.2 

 

The Figure 5.4 shows the UAVs closest approach with obstacle as the Percentage of the 

safety sphere radius. The Figure 5.5 shows the final distance of UAV from the 

destination. 
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Figure 5.4: UAV’s Closest Approach to Obstacle with NGG Navigation 

 

Figure 5.5: UAV’s Target Miss Distance with NGG Navigation 
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between the start point and the destination. The initial velocity of the UAV is also chosen 

randomly uniformly distributed between following limit (in meters per second). 

5 20
5 5
5 5

u
v
w

     ≤ ≤
− ≤ ≤
− ≤ ≤

     (5.7) 

For first 10 seconds of the simulation, no control is applied and EKF estimates the 

obstacle and target positions in an open loop system (pre-run). After the pre-run, EKF 

reinitializes the state vector and error covariance and then system applies one of the two 

navigation law in order to find a collision free path. Figure 5.6 shows an example 

scenario of 3D space where simulations are being conducted. 

 
Figure 5.6: Finite 3D Space with Two Obstacles 

 

5.2.1 DGG Navigation Strategy 
In this part of the experiments, DGG navigation law was applied in order to find a 

collision free path. A total of 1000 simulation runs performed in order to test the 

effectiveness of the DGG navigation law while estimating two obstacles and target 

positions with EKF. Based on the success criterion described in section 5.1, following 

Table IV shows the Percentage of successes. 

TABLE IV: Success Percentage with DGG Navigation 

Success 

band 

% Run Satisfying the 

Success Conditions for 

Obstacle 1 

% Run Satisfying the 

Success Conditions for 

Obstacle 2 

% Run Satisfying the Success 

Conditions for Both Obstacles 

Simultaneously 

S-1 48.6 51.9 31.4 

S-2 68.8 75 54.6 

Start 

Destination 
Obstacles with Safety Spheres 

Y axis 

X axis 

Z axis 
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S-3 82.5 88.5 74.3 

S-4 88.5 95.6 84.3 

 

 

The Figure 5.7 shows the UAVs closest approach with obstacle 1 as the Percentage of the 

safety sphere radius. Similarly Figure 5.8 shows the UAVs closest approach with obstacle 

2 as the Percentage of the safety sphere radius. The Figure 5.9 shows the final distance of 

UAV from the destination. 

 
 

Figure 5.7: UAV’s Closest Approach to Obstacle 1 with DGG Navigation 
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Figure 5.8: UAV’s Closest Approach to Obstacle 2 with DGG Navigation 

 

 
Figure 5.9: UAV’s Target Miss-Distance with DGG Navigation 

 

5.2.2 NGG Navigation Strategy 
In this part of the experiments, NGG navigation law was applied in order to find a 

collision free path. A total of 1000 simulation runs performed in order to test the 
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positions with EKF. Based on the success criterion described in section 5.1, following 

Table V shows the Percentage of successes. 

TABLE V: Success Percentage with NGG Navigation 

Success 

band 

% Run Satisfying the 

Success Conditions for 

Obstacle 1 

% Run Satisfying the 

Success Conditions for 

Obstacle 2 

% Run Satisfying the Success 

Conditions for Both Obstacles 

Simultaneously 

S-1 46.8 55.3 27.6 

S-2 79.3 70 57.5 

S-3 80.4 90.5 73.9 

S-4 87.8 96.4 84.7 

 

The Figure 5.10 shows the UAVs closest approach with obstacle 1 as the Percentage of 

the safety sphere radius. Similarly Figure 5.11 shows the UAVs closest approach with 

obstacle 2 as the Percentage of the safety sphere radius. The Figure 5.12 shows the final 

distance of UAV from the destination. 

Figure 5.10: UAV’s Closest Approach from Obstacle 1 with NGG Navigation 
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Figure 5.11: UAV’s Closest Approach from Obstacle 2 with NGG Navigation 

 

Figure 5.12: Distances between Destination and UAV’s Final Location with NGG 

Navigation 
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expected. During the simulation runs of system, Sigma-bound test was also performed in 

order to check if error in state estimates lies within the standard deviation given by the 

error covariance matrix P . Figure 5.13 shows the Sigma-bound test for obstacle 

estimation in one of the simulation run. 

 

 
Figure 5.13: One Sigma Bound Test 

 

With each simulation run, Sigma bound test was performed i.e. estimation error in state 

element is compared with the square root of the corresponding diagonal element of the P  

matrix. At the same time estimation errors are also compared with two times and three 

times of the error standard deviation. Following Tables VI to IX show the results of 

Sigma-bound test in terms of percentage of estimation errors bounded by 1-Sigma, 2-

Sigma and 3-Sigma bounds for each set of the simulation. Results are given is average 

terms i.e. after running 1000 simulations, the Sigma test results are averaged for all 

simulations. 
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Table VI: Single Obstacle with Target Estimation while Applying DGG Navigation 
State 

Vector 

Elements 

Average % of the 

Estimation Error Bounded 

by 1-Sigma 

Average % of the 

Estimation Error Bounded 

by 2-Sigma 

Average % of the 

Estimation Error Bounded 

by 3-Sigma 

obr  66.05 94.24 98.97 

obθ  64.18 95.67 99.35 

obφ  63.92 96.57 98.21 

trr  77.73 91.44 94.83 

trθ  68.59 94.46 98.68 

trφ  69 94.49 98.76 

 

Table VII: Single Obstacle with Target Estimation while Applying NGG Navigation 
State 

Vector 

Elements 

Average % of the 

Estimation Error Bounded 

by 1-Sigma 

Average % of the 

Estimation Error Bounded 

by 2-Sigma 

Average % of the 

Estimation Error Bounded 

by 3-Sigma 

obr  65.95 91.85 97.05 

obθ  62.65 96. 34 97.73 

obφ  63.02 96.93 99.25 

trr  77.06 91.89 94.5 

trθ  69.22 94.26 98.65 

trφ  68.14 94.28 98.79 
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Table VIII: Two Obstacles with Target Estimation while Applying DGG Navigation 
State 

Vector 

Elements 

Average % of the 

Estimation Error Bounded 

by 1-Sigma 

Average % of the 

Estimation Error Bounded 

by 2-Sigma 

Average % of the 

Estimation Error Bounded 

by 3-Sigma 

1obr  65.98 93.06 99.46 

1obθ  66.56 89.93 96.69 

1obφ  65.32 90.63 96.31 

2obr  70.28 96.43 99.18 

2obθ  64.62 89.87 95.33 

2obφ  63.74 89.72 95.37 

trr  78.24 93.45 96.60 

trθ  68.90 95.03 99.34 

trφ  67.92 94.64 99.31 

 

Table IX: Two Obstacles with Target Estimation while Applying NGG Navigation 
State 

Vector 

Elements 

Average % of the 

Estimation Error Bounded 

by 1-Sigma 

Average % of the 

Estimation Error Bounded 

by 2-Sigma 

Average % of the 

Estimation Error Bounded 

by 3-Sigma 

1obr  67.98 86.710 93.93 

1obθ  64.36 96.56 99.58 

1obφ  62.56 84.21 91.49 

2obr  62.41 89.63 95.81 

2obθ  61.38 94.83 99.14 

2obφ  68.58 95.69 99.49 

trr  78.32 93.39 96.81 

trθ  66.38 94.81 99.08 

trφ  69.16 94.82 98.85 
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The Sigma bound tests whether the error covariance matrix is representing the estimation 

errors as theoretically expected. The diagonal elements of the P  matrix correspond to the 

estimation error variance of the individual state vector elements. Theoretically, the 

estimation errors should be normally distributed with covariance given by the P  matrix. 

If estimation errors are normally distributed, they should be according to the following 

empirical law of normal distribution: 

 

• Percentage of estimation errors bounded by 1-Sigma: 68.26 

• Percentage of estimation errors bounded by 2-Sigma: 95.44 

• Percentage of estimation errors bounded by 3-Sigma: 99.74 

 

It is clear from above tables that EKF developed in this algorithm is following these 

bonds with a satisfactory degree. This indicates that EKF is performing as theoretically 

expected with good convergence. 
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Chapter 6  

Conclusions 
A solution to the mission-critical problem of reactive collision avoidance of UAVs is 

presented in this paper. Two newly developed guidance strategies which are highly suited 

to solve the problem, i.e. NGG and DGG are validated in this paper with vision based 

sensing. The effectiveness of the two guidance laws in the presence of the visual 

information is demonstrated in the simulation results to problem scenarios with stationary 

obstacles in 3D. 

 

The vision based sensing is one of most focused research area in UAV automation 

because of its many significant advantages. Additionally in nature, most of the birds and 

insects apply vision based sensing as most effective tool for navigation and detection. 

The significance of guidance strategies implemented here for collision avoidance lies in 

their emphasis on rapid alignment, in contrast with existing guidance laws. Since 

collision avoidance is a potentially mission-critical component, specifications such as low 

control effort, minimum fuel consumption etc. are not as crucial as the safety of the 

vehicle. 

 

A possible extension to the ideas presented in this paper is the problem of collision 

avoidance with moving and maneuvering obstacles such as other UAVs (e.g., urban 

warfare situation). Note that the use of the vision based sensing is not limited to only 

collision avoidance. Other potential applications would include guidance of missiles and 

guided munitions since the obstacles can in fact be the real target. So instead of avoiding 

them, objective could be to intercept them. 

 

Additionally, an effort has been made into developing an effective vision based 

collision avoidance technique; some of the assumptions made in this study (such as 

stationary point obstacles, perfect information about UAV’s position and velocity, 
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availability of assumed image processor, kinematic model) are not realistic and hence 

needs to be relaxed in future studies. 
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Appendix A 

Derivation of the Expressions for Criteria of Criticality and 

Aiming Point in the Collision Cone Approach 
From Figure 4.1 we note that ir  and iu  are perpendicular, giving the following results: 

( ) 0 1,2i i r i ir u X du u i⋅ = + ⋅ =        =    (A1) 

Since 1i iu u⋅ =  we have: 

0r iX u d⋅ + =      (A2) 

The vector iu  is defined in a 2D space spanned by rX and V  and can therefore be 

expressed as 

i i r iu X Vα β= +     (A3) 

where iα and iβ  are scalar coefficients. Using this in (A2), 

2( ) || || ( ) 0r i r i i r i rX X V d X X V dα β α β⋅ + + = + ⋅ + =   (A4) 

2

( )
|| ||

i r
i

r

X V d
X

βα ⋅ +
= −     (A5) 

Further, 1i iu u⋅ = , therefore from (A3), 

2 2 2 2( ) ( ) || || 2 ( ) || || 1i r i i r i i r i i r iX V X V X X V Vα β α β α α β β+ ⋅ + = + ⋅ + =  (A6) 

Substituting (A4) in (A6): 
2

2 2
2 2

( ( ) ) ( ( ) ) ( )2 || || 1
|| || || ||

i r i r i r
i

r r

X V d X V d X V V
X X

β β β β⋅ + ⋅ + ⋅
− + =  (A7) 

Solving for iβ , 

2 2

2 2 2

|| ||
|| || || || ( )

r
i

r r

X d c
X V X V

β −
= ± = ±

− ⋅
   (A8) 

Let 1 cβ = +  and 2 cβ = − , from (A3) and (A4) 

1 2

1 ( ( ) )
|| || r r

r

u c X V d X cV
X

= − ⋅ + +        (A9) 

2 2

1 ( ( ) )
|| || r r

r

u c X V d X cV
X

= ⋅ − −    (A10) 
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Then, the vectors ir  may be expressed as 

1 1 2 ( ( ) )
|| ||r r r r

r

dr X du X c X V d X cdV
X

= + = − ⋅ + +    (A11) 

2 2 2 ( ( ) )
|| ||r r r r

r

dr X du X c X V d X cdV
X

= + = + ⋅ − −    (A12) 

After adding (A11) and (A12), we have 
2 2

1 2 2

|| ||2 r
r

r

X dr r X
X

−
+ =     (A13) 

2

1 22 2

1 ( )
2 || ||

r
r

r

XX r r
X d

= +
−

    (A14) 

Substituting (A14) in (A11): 

( )1 1 22 2

( )1 1
2 || ||

r

r

cd X Vr r r cdV
X d

⎛ ⎞⋅
= − + +⎜ ⎟−⎝ ⎠

  (A15) 

Therefore, the expression for V is derived to be: 

( )1 1 22 2

( )1 1 1
2 || ||

r

r

cd X VV r r r
cd X d

⎛ ⎞⎛ ⎞⋅
= − − +⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

   (A16) 

1 22 2 2 2

1 1 1 1
2 || || 2 || ||

r r

r r

X V X VV r r
X d cd X d cd

⎛ ⎞ ⎛ ⎞⋅ ⋅
= + + −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

  (A17) 

Comparing (A17) and (4.1), we have the following expressions 

2 2

1 1
2 || ||

r

r

X Va
X d cd

⎛ ⎞⋅
= +⎜ ⎟−⎝ ⎠

    (A18) 

2 2

1 1
2 || ||

r

r

X Vb
X d cd

⎛ ⎞⋅
= −⎜ ⎟−⎝ ⎠

    (A19) 

(A18) and (A19) give the expressions for a  and b , used to determine the criticality of an 

obstacle. The unit vectors 1u  and 2u  in (A9) and (A10) are used for aiming point 

computation. 
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Appendix B 

Derivation of the Virtual Aiming Point in the Sphere Tracking 

Algorithm for Tracking Safety Sphere 
 

The objective of the sphere tracking algorithm is to compute a virtual aiming point. The 

virtual aiming point is a point on the surface of the safety sphere and is the intersection of 

rX  and the safety sphere (see Figure 4.2). The equation of the line rX  in the two-point 

form is: 

ob ob ob

v ob v ob v ob

x x y y z z k
x x y y z z

− − −
= = =

− − −
     (B1) 

where k  is the constant of proportionality. Further, the equation of the safety sphere is: 
2 2 2 2( ) ( ) ( )ob ob obx x y y z z d− + − + − =    (B2) 

We wish to find the intersection of the relative distance line with the safety sphere. 

Therefore, substituting (B1) in (B2) yields the following equation: 
2 2 2 2 2 2 2( ) ( ) ( )v ob v ob v obk x x k y y k z z d− + − + − =   (B3) 

 
2 2( ) ( ) ( )v ob v ob v ob

dk
x x y y z z

= ±
− + − + −

   (B4) 

The virtual aiming point vap vap vap vapX x y z ( , , ) is computed from (B1) by substituting for k : 

( )vap v ob obx k x x x = − +      (B5) 

( )vap v ob oby k y y y = − +     (B6) 

( )vap v ob obz k z z z = − +      (B6) 

There are two solution sets for vapX  depending on the sign of k . Note that in the above 

equations for the x, y and z coordinates, the value of k  may either be uniquely positive or 

uniquely negative (from (B4)). The solution chosen is the point closer to the vehicle's 

position vX  . 
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Appendix C 

Vision Based Obstacle Avoidance Algorithm 
The step-by-step algorithm implemented in the numerical simulations is given below. For 

simplicity algorithm presented here is for position estimation of only one object. It can be 

easily augmented for simultaneous position estimation of multiple objects by augmenting 

the state vector and EKF accordingly. 

 

Step 1:  After getting the first processed image from the image processor, initialize the 

state vector ˆ (0)rX  according to number of objects found. 

ˆ ˆˆ ˆ(0) (0) (0) (0)
T

r ob ob obX r θ φ⎡ ⎤= ⎣ ⎦  

here ˆ (0)obr  is given with 50% uncertainty assuming some prior information, while 

ˆ (0)obθ  and ˆ (0)obφ  are given by first measurements. 

 

Step 2:  Initialize the Error Covariance Matrix 0P : 

2 2
2 0 0

0 1 2 3100 100
V Vr W r WP diag a e a a

⎛ ⎞× ×⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

here e  is the maximum range measurement uncertainty (in meters) given by the 50% 

of the distance between the start point and the destination, 0 20r =  is maximum 

percentage measurement noise. 1 1a = , 2 2a =  and 3 2a =  are tuning parameters. VW  

is camera’s width of view (in radians) assumed 2
3

π . 

 

Step 3:  Initialize the Process Noise Covariance Q : 

( )0.2 0.025 0.025Q diag=  

 

Step 4:  Run EKF in open loop system for 10 Seconds (Pre-run) 
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4.1: Propagate the State Vector 
1

ˆ ˆ
k kr rX X

−

+ −→ : 

ˆ ˆ ˆ ˆ ˆcos cos sin cos sin
ˆ ˆsin cosˆ

ˆ ˆˆ ˆcos cos
ˆ ˆ ˆ ˆ ˆcos sin sin sin cos

ˆ ˆ ˆ

ob ob ob ob ob

ob ob
r

ob ob ob ob

ob ob ob ob ob

ob ob ob

u v w

X u v
r r

u v w
r r r

θ φ θ φ φ

θ θ
φ φ

θ φ θ φ φ

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥
⎢ ⎥= − +
⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎢ ⎥⎣ ⎦

 

 

4.2: Propagate the Covariance Matrix 1k kP P+ −
− → : 

( ) ( ) ( ) ( ) ( )TP t A t P t P t A t Q= + +  

here ( )A t  is calculated by using expression in equation (3.35). 

 

4.3: Compute Measurement Error Covariance Matrix kR : 

2 21 1
100 3 100 3k k

V V
k ob ob

W WR diag r r
⎛ ⎞⎛ ⎞ ⎛ ⎞= × ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠  

here 
kobr  is given by the equation (3.25) from range dependent measurement noise 

model. 

 

4.4: Compute Kalman Filter Gain kK : 

1T T
k k k k k k kK P C C P C R

−− ⎡ ⎤= +⎣ ⎦  

here 
ˆ ( )

0 1 0
0 0 1k

kX t

hC
X −

∂ ⎡ ⎤= = ⎢ ⎥⎣ ⎦∂
 

 

4.5: Take the Measurement kY : 

0 1 0
0 0 1 kk r kY X v⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 

Note that here 
kr

X  is the actual value of the state vector and kv  is the 

measurement noise vector. 
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4.6: Update the State Vector ˆ ˆ
k kr rX X− +→ : 

ˆ ˆ ˆ( )
k k kr r k k rX X K Y h X+ − −⎡ ⎤= + −⎣ ⎦  

 

4.7: Update the Covariance Matrix k kP P− +→ : 

( ) ( )T T
k k k k k k k k kP I K C P I K C K R K+ −= − − +   

 

4.8: For first 10 seconds, at every grid point of time, repeat steps 4.1 to 4.7. 

 

Step 5:  Reinitialize the State Vector ˆ (0)rX  

1

1ˆ ˆ(0) ( )
N

r r
i

X X i
N =

= ∑  

here N  is the number of estimations made by EKF during pre-run (Step 4). 

 

Step 6:  Reinitialize the Error Covariance Matrix 0P : 

2 2
2 0 0

0 1 2 3100 100
V Vr W r WP diag a e a a

⎛ ⎞× ×⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 

Step 7: Run EKF with Guidance in Closed Loop System till the UAV crosses the Target 

 

5.1: Repeat steps 4.1 to 4.7 i.e. Estimate the Obstacle or Target Position. 

 

5.2: Perform the Smoothing Operation 

1

1ˆ ˆ
k i

k

r r
i k n

X X
n = − −

= ∑  

here ˆ
kr

X  is smoothed estimate, ˆ
kr

X  original estimate at time instant k  and 

10n = . 

 

5.3: If Estimated Object is Obstacle: 
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- Check for collisions (Apply Collision Cone approach given in Appendix 

A) 

 Compute a  and b  

 If 0a >  AND 0b > , obstacle is critical 

- Find apX  

 If a b> , 1ap vX X r= +  

 If b a> , 2ap vX X r= +  

5.4: If Estimated Object is Target: 

ˆ
kap rX X=  

5.5: Find ( )ap XYX , ( )ap XZX , XYV  and XZV : Project apX  and V  on to XY and XZ planes 

5.6: XY plane: 

- Angle error 1 ( )
cos

|| |||| ( ) ||
XY ap XY

y
XY ap XY

V X
V X

θ −
⎛ ⎞⋅

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

- Desired velocity * [( ) ]
[( ) ]

ap XY y

ap XY x

X
v u

X
=  

- Sign convention: 

 If *v v< , 0yθ >  

 If *v v> , 0yθ <  

- Compute control ya  

 DGG: *( )y va k v v= −  

 NGG: ˆ siny v ya k θ= where 
2 2 2 2*

v̂ v
u v u vk k

u
+ +

=  

5.7: XZ plane: 

- Angle error 1 ( )
cos

|| |||| ( ) ||
XZ ap XZ

z
XZ ap XZ

V X
V X

θ −
⎛ ⎞⋅

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

- Desired velocity * [( ) ]
[( ) ]

ap XZ z

ap XZ x

X
w u

X
=  

- Sign convention: 



 71

 If *w w< , 0zθ >  

 If *w w> , 0zθ <  

- Compute control ya  

 DGG: *( )z wa k w w= −  

 NGG: ˆ sinz w za k θ=  where 
2 2 2 2*ˆ

w w
u w u wk k

u
+ +

=  

5.8: State update: 

X V
UV

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 with 

0
y

z

U a
a

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 

5.9: If any point of time: 

rX d≤  

That is if vehicle position violates obstacle safety boundary, activate Sphere 

Tracking algorithm given in Appendix B. 
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